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on the number line.
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Negative Numbers Zero Paositive Numbers
{e.g., -7.5, -88, ~/3 ) {0) {e.g., 0.001, 37, V1B }
Numbers less than 0. Neither Numbers greater than 0.
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negative,
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Rational N2umbars
(e.g.,g, -3 7.31, -5,
V8, 0.333...)

Can be expressed exactly
as a ratio of two integers.

Irrational Numbers

Contrary to former views of
mathematics, numbers were in-
vented by people, rather than
simply being discovered. In this
book you will see how things in-
vented mainly to form a complete -
mathematical system can be used
to describe things that happen in
the real world. First, however,
you must be sure that you and
your Instructor are speaking the
same language! The first chapter
is designed with this purpose in
mind.
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Radicals

Transcendental Numbers

Integers
(e.g., 2,-17, 2001, 0)

Whole numbers and
their opposites.

Nanin;egeés
{e.g.; 2 1?, ~4,63}

Fractions: Numbers between
the integers.

te.g., VB, 317

Involve square root, cube
root, ete., of integers.
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roots of integers.
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Natural Numbers
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Positive integers or
counting numbers
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Numbers from which the
numerals are made.

Even Numbers
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Integers divisible by 2.
{Integrai multiples of 2)
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SETS OF NUMBERS

From previous work in mathematics you should recall the names of differ-
ent kinds of numbers (positive, even, irrational, etc.). In this section you
will refresh your memory so that you will know the exact meaning of
these names.

Objective:
Gyiven the name of a set of oumbers, provide an example; or given & num-
ber, name the sets to which it belongs.

There are two major sets of numbers you will deal with in this course, the
real numbers and the imaginary numbers. The real nurabers are given this
name because they are used for “real” things such as measuring and count-
ing. The imaginary numbers are square roots of negative numbers. They
are useful, too, but you must learn more mathematics to see why.

The real numbers are all numbers which you can plot on a number line
(see Figure 1-1). They can be broken into subsets in several ways. For in-
stance, there are positive and negative real numbers, integers and non-
integers, rational and irrational real numbers, and so forth. The diagram
facing this page shows some subsets of the set of real numbers.

The numbers in the diagram were invented in reverse order. The natural
{or “counting’’) numbers came first because mathematics was first used for
counting. The negative numbers (those less than zero) were invented so
that there would always be answers to subtraction problems. The rational
numbers were invented to provide answers to division problems, and the
irrational ones came when it was shown that numbers such as V2 could
not be expressed as a ratio of two integers.

fillllil L
-7 -6 -5 -4 -3 -2 -1 6 1 2 3 4 5 8 7

The real number fing
Figure I-1
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Other operations you will invent, such as taking logarithms and cosines,
lead to irrational numbers which go beyond even extracting roots. These
are called “transcendental” numbers, meaning “going beyond.” When all
of these various kinds of numbers are put together, you get the set of real
numbers. The imaginary numbers were invented because no real number
squared equals a negative number. Later, you will see that the real and
imaginary numbers are themselves simply subsets of a larger set, called
the “complex numbers.”

The following exercise is designed to help you accomplish the objectives
of this section.

— e L et e o e st

l EXERCISE 1-1

1. Write a definition for each of the following sets of numbers. Try to do
this without referring to the diagram opposite page 1. Then look to
make sure you are correct, ‘

{integers}

{even numbers}

{negative numbers}

{irrational numbers}

{real numbers}

{counting numbers}

{digits}

{positive numbers}
{rational numbers}
{imaginary numbers}
{patural numbers}
{transcendental nos.}

e e oo
e o

2. Write an example of each type of number mentioned in Problem 1.

3. Copy the chart at right. Put a check mark in each box for which the
number on the left of the chart belongs to the set across the top.

4. Write another narme for {natural numbers}.

5. Which of the sets of numbers in Problem 1 do you suppose was the
first to be invented? Why?

6. One of the sets of numbers in Problem 1 contains all but one of the
others as subsets.
a. Which one contains the others?
b. Which one is left out?

7. Do decimals such as 2.718 represent rational numbers or irrational
nummbers? Explain.

8. Do repeating decimals such as 2.3333 . . . répresent rational mimbers
or irrational numbers? Explain.

9. What real number is neither positive nor negative?
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l THE FIELD AXIOMS

|

From previous mathematics courses you probably remember names such
as “Distributive Property,” “Reflexive Property,” and “Multiplication
Property of Zero.” Some of these properties, called axioms, are accepted
without proof and are used as starting points for working with numbers.
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From a small number of rather obvious axioms, you will derive all the
other properties you will need. In this section you will concentrate on the
axioms that apply to the operations with numbers such as + and X. In
Section 1-7 you will find the axioms that apply to the relationships be-
tween numbers, such as = and <,

Objective: _
Given the name of an axiom that applies to + or X, give an example that
shows you understand the meaning of the axiom; and vice versa.

There are eleven axioms that apply to adding and multiplying real num-
bers. These are called the Field Axioms, and are listed in the following
table. If you already feel familiar with these axioms, you may go right to
the problems in Exercise 1-2. If not, then read on!

THE FIELD AXIOMS




iz The Feld AXionms

Notes:

1

. Any set that obeys all eleven of these axioms is a field.

7 The eleven Field Axioms come in 5 pairs, one of each pair being for
addition and the other for multiplication. The Distributive Axiom ex-
presses a relationship between these two operations.

3. The properties x + 0 = xand x-1 = x are sometimes called the
“Addition Property of 0" and the “Multiplication Property of 1,” re-
spectively, for obvious reasons.

4. The number —x is called, “the opposite of x,” “the additive inverse of
x,” or “negative x.”

5. The number * is called the “multiplicative inverse of x,” or the

“reciprocal of x.” '

Closure —By saying that a set is “closed” under an operation, you mean
that you cannot get an answer that is out of the set by performing that op-
eration on numbers in the set. For example, {0, 1} is closed under multipli-
cationbecause 0 X 0 = 0,0x 1 =0,1x0=0,and1 X 1= 1. All
the answers are unique, and are in the given set. This set is not closed un-
der addition because 1 + 1 = 2, and 2 is not in the set. It is not closed
under the operation “taking the square root” since there are two different
square roots of 1: +1 and —1.

Commutativity—The word “commute” comes from the Latin word
“commutare,” which means “to exchange.” People who travet back and
forth between home and work are called “commuters” because they regu-
larly exchange positions. The fact that addition and multiplication are com-
mutative operations is somewhat unusual. Many operations such as subtrac-
tion and exponentiation (raising to powers) are rot commutative. For
example,

2 — 5 does not equal 5 — 2,
and

2* does not equal 3.

5
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Indged, most operations in the real world are not commutative. Putting on
your shoes and socks (in that order) produces a far different result from
putting on your socks and shoes!

Associativity—You can remember what this axiom states by remembering
that to “associate” means to “group.” Addition and multiplication are asso-
ciative, as shown by

24+3)+4=9 and 2+ (3+4)=09,
But subtraction is not associative. For example,
2-3)~4=~-5 and 2-(3—4) =3

Distributivity—DParentheses in an expression such as 2 (3 + 4) mean,
“Do what is inside first.” But you don’t have to do 3 + 4 first. You
could “distribute” a 2 to each term inside the parentheses, getting

2 X 3 4+ 2 X 4. The Distributive Axiom expresses the fact that you get
the same answer either way. That is, :

2X(3+4) =14 and 2X3+2X4=14.
Note that multiplication does not distribute over multiplication. For exam-
ple,

2X(3X4) doesnotequal 2 X 3 X2 X 4,

as you can easily check by doing the arithmetic.

Identity Elements—The numbers 0 and 1 are called “identity elements” for
adding and multiplying, respectively, since a number comes out “identical”
if you add O or multiply by 1. For example,

540=5 and 5x1=35.

Inverses— A number is said to be an inverse of another number for a cer-
tain operation if it “undoes” (or inverts) what the other number did. For
example, 3 is the multiplicative inverse of 3. If you start with 5 and mufti-
ply by 3 you get

3 X3 =15,
Multiplying the answer, 15, by 1 gives
i
Ko =
i5 3 S,

which “undoes” or “inverts” the multiplication by 3. It is easy to tell if two
numbers are multiplicative inverses of each other because their product is
always equal to 1, the multiplicative identity element. For example,

1
X == 1,
3 3 i

1

Y- sl e .o o et *
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Similarly, two numbers are additive inverses of each other if adding them
to each other gives 0, the additive identity element. For example, 3 and
— 3 are additive inverses of each other because

P4 (-9 =0

The following exercise is designed to familiarize you with the names and
meanings of the Field Axioms.

i: EXERCISE 1-2

|

Do These Quickly

The following problems are intended to refresh your skills. Some prob-

lems come from the last section, and others probe your general knowledge

of mathematics. You should be able to do all 10 in less than 5 minutes.
Q1. Simplify: 11 - 3 + 5

Q2. Maultiply and simplify: (%—) (g«)

Q3. Add: 374+ 35
Q4. Ifx + 7 is 42, what does x equal?
Q5. Is —13 an integer?
©6. Multiply: (9x)(6x)
Q7. Square 7.
8. Is 1.3 a rational number?
9. Multiply: 5(3x ~ 8)
Q10. Simplify: (~3)0.7)}(—3)(—1)

Work the following problems.

1. Tell what is meant by
a. additive identity element,
b. multiplicative identity eiement.

2. What is
a. the additive inverse of £7
b. the multiplicative inverse of 7

3. Using variables (x, y, z, etc.) to stand for numbers, write an example
of each of the eleven field axioms, Try to do this by writing all eleven

=~
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examples first, then checking to be sure you are right. Correct any
which you left out or got wrong.

4. Explain why O has no multiplicative inverse.

5. The Closure Axiom states that you get a unique answer when you add
two real numbers. What is meant by a “unique” answer?

6. You get the same answer when you add a column of numbers “up” as
you do when you add it “down.” What axiom(s) show that this is
true?

7. Calvin Butterball and Phoebe Small use the distributive property as
follows:

Calvin: 3(x + 4)(x + 7) = (3x + 12}{(x + 7).
Phoebe: 3(x -+ 4)(x + 7) = (3x + 12)(3x + 21).

- Who is right? What mistake did the other one make?

8. Write an example which shows that:

Subtraction is not a commutative operation.

{negative numbers} is not closed under multiplication.

{digits} is not closed under addition.

{real numbers} is not closed under the V' operation (taking the

square roof).

e. Exponentiation (“raising to powers”) is nor an associative opera-
tion. (Try 4°.)

ao o

9. For each of the following, tell which of the Field Axioms was used,
and whether it was an axiom for addition or for multiplication. As-
sume that x, y, and z stand for real numbers.

a. x+(y+z=&x+y) +z

b. x-(y + z) is a real number

c. x(y+z)=x-(z+y

d x(y+z)=(y+2=x

e. x-(y+z)=xy+ xz

f. 2 {y+z)=x{y+2)+0

g x(y+z+(-[x(y+2)=0
h. x-(y+z=x(y+2)-1

1 x'(y+z)'m}mw=l

10.  Tell whether or not the following sets are fields under the opera-
tions + and X. If the set is not a field, tell which one(s) of the Field
Axioms do not apply.

a. {rational numbers}

b. {integers}

c. -{positive numbers}

d. {non-negative numbers}

. . i~ ’ . .
s - Gt . - = K o B ol
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1.3 Variables and EXpressions

t VARIABLES AND EXPRESSIONS

In previous mathematics courses you have seen expressions, such as
3x% + 5x — 7,

that stand for numbers. Just what number an expression stands for depends
on what value you pick for the variable (x in this case). The name
“variable” is picked because x can stand for various different numbers at
different times. The numbers 3, 5, =7, 16, V11 etc., are called constants
because they stand for the same number gil the time.

In this section you will evaluate expressions by substituting values for the
variable. In order to do this more easily, you can simplify the expression
using the axioms of the previous section.

Objective:
Given an expression containing a variable,

a. evaiuate it by substituting a given number for the variable, and finding
the value of the expression,

b. simplify it by using the Field Axioms to transform it to an equivalent
expression thaf is easier to evaluate.

DEFINITION

For example, if the set you have in mind is {digits}, and x is the variable,
then x could stand for any one of the numbers 0, 1, 2, 3, 4, 5,6,7,8,or
9. In this case, {digits} is called the domain of x. The word comes from
the Latin “domus,” meaning “house.” So the domain of a variable is
“where it lives.” Since the domain of most variables in this course will be
{real numbers}, you make the following agreement:

AGREEMENT
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DEFINITION

To find out what number an expression stands for, you must substitute a
value for each variable, then do the indicated operations.

EXAMPLE 1
Bvaluate 3x2 + 5x — 7 if x = 4.
Selution:
3x2 + 5x ~ 7 Write the given expression.

=3-4*+ 5-4 -7 Substitute 4 for x.

=316+ 5-4 — 7 Square the 4.

=48 + 20—~ 7 Do the multiplication.

= 61 Add and sabtract from left to right. |

There are several things you should realize about the preceding calcula-
tions. First, you must substitute the same value of x everywhere it appears
in the expression. Although a variable can take on different values at dif-
ferent times, it stands for the same number at any one time. This fact is
expressed in the Reflexive Axiom, which states, “x = x.”

The second thing you should realize is that this expression involves sub-

. traction and exponentiation (raising to powers). These operations, as well

as division, can be defined in terms of addition and multiplication.

DEFINITIONS
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The third thing you should realize is that the answer you get depends on
the order in which you do the operations. So that there will be no doubt
about what an expression such as 3x* + 5x — 7 means, you make the fol-
lowing agreement:

AGREEMENT

EXAMPLE 2

Carry out the following operations:

a. 3445 Multiply first.
= 3+ 20
= 23 Add last.
b. g_-i- 4x5+2
=734 20+ 2 Multiply and divide from left to right.
=3+ 10 Divide before adding.
=13 Add last.

C. 3-4x5+24+9
=3 20+2-+9 Multiply and divide from left to right.

=3~ 10+9 Divide before + and .
==74+9 Add and subtract from left to right.
= 2 Add and subtract last. 5

An expression might contain the absolute value operation. The symbol | x|
means the distance between the number x and the origin of the pumber
line. For example, | —3| and | 3| are both equal to 3, since both 3 and —3
are located 3 units from the origin (Figure 1-3).

i1
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3 units 3 units

Figure 1-3

Similarty,

o = o,
and so forth.
The absolute value of a variable presents a problem. If x is a positive

number, then | x| is equal to x. But if x is a negative number, then |x| is
equal to the opposite of x. For instance, if x = —9, then

x| =|-9]=—(~9) =9.

A precise definition of absolute value can be written as follows:

DEFINITION

EXAMPLE 3

Evaluate | 17 — 4x] — 2 if

a x=35

b. x=-3.

a. [17 ~ 4x| — 2
= |17 — 20| — 2 Substitute 5 for x.
=[-3] -2 Arithmetic
== 3 - 7 Definition of absolute value
=1 Arithmetic

b. 1—17 —4x| -2
= |17 + 12| — 2 Substitute —3 for x.
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=129| -2 Arithmetic
=20 — 2 Definition of absolute value

=27 Arithmetic =

Two expressions are equivalent if they equal each other for all values of
the variable. For example, 3x + 8x and 11x are equivalent expressions.
Simplifying an expression means transforming it to an equivalent expres-
sion that is in some way simpler to work with. The expression 11x is con-
sidered to be simpler than 3x + 8x because it is easier to evaluate whei
you pick a value of x. Adding the 3x and 8x is called “collecting like
terms.” It is justified by using the Distributive Axiom backwards.

3x + 8 = (3 + 8)x Distributivity
ilx Arithmetic

i

EXAMPLE 4
Sumplify 7x-2 =+ x.

Since the Field Axioms apply to multiplication rather than division, you

o, 1o

would treat “+ x” as “- 17, commute the multiplication, and get
Tx-2 +2x

= Tx-2- Definition of division

1
x
1 - - » .
= {7x-—}-2 Commutativity and associafivity
X
72

Associativity and multiplicative inverses
=14 Arithmetic ]

EXAMPLE 5
Simplify 2 — 3[x — 2 — 5(x — D]
Here you must observe the agreed-upon sequence of operations. The first

thing to do is start inside the innermost parentheses and work your way
out (fike a termite!}.

2 —3[x — 2~ 5(x = 1)}
w9 —3[x—2~5x+5] Distributivity
=72 — 3[—4x + 3] Collecting like terms
24+ 12x— 9 Distributivity

i

12x — 7 Commutativity and associativity i
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Notes:

1. You must remember some things from previous mathematics courses.
For example, a negative number times a negative number is a positive
number. This sort of thing can be proved using the Field Axioms, as
you will see in Section 1-7.

2. There are several kinds of symbois of inclusion.

{ ) Parentheses.

[ ] Brackets.

{ 1} Braces (also used for set symbols).

" Vinculum (an overhead line, used in fractions and elsewhere, such

x 3

x + 7)' :

To avoid so many different symbols, sometimes “nested” parentheses

are used. For example, the expression

2 - (3+4(5- 607+ x))
would be simplified by starting with the innermost parentheses.

as in

In the following exercise, you will practice simplifying and evaluating ex-
pressions. If the going gets difficult, just tell yourself that no matter how

complicated an expression looks, it just stands for a number. And people
invented numbers!

i EXERCISE 1-3

Do These Quickly

The following problems are intended to refresh your skills. Some are from
the first two sections of this chapter, and others probe your general knowl-
edge of mathematics. You should be able to do all 10 in less than 5 min-
utes. ’

Ql. IsV9an integer?

Q2. Is —%a real number?

Q3. Commute the 3 and the x: 2y + 3 + x

Q4. Associate the 4a and the 2¢: 4a + 2¢ + 5d

Q5. Distribute the 5: 5(3x — 7)

Q6. Write the additive javerse of §.

.. § - M &3"‘ w Jwemee - ' 3 - wﬂ' o3 Q.g_-\i- [ T
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Q7. Write the multiplicative identity element.
Q8. If 3x equals 42, what does x equal?
Q9. Maultiply: (2.3)(4)

Q10. Divide and simplify: 3) + &)

For Problems 1 through 10, carry out the indicated oﬁerations in the
agreed-upon order.

1. 5+6X7 2. 3+8x7

3. 9—4+5 4, 11 -6+ 4

5. 12+3xX2 6. 18 +9x2

7. 7T—-8+2+4 g, 24—~12x2+4

9. 16 -4+ 12+6X2 10, 30 ~30x2+8+2

For Problems 11 through 24, evaluate the given expression

(a) forx = 2

(b) for x = —3.

11. 4x — 1 12. 3x~5

13. |3x — 5] 140 l4x — 1]

15, 5~Tx— 8 16. 8 —5x -2

17. 18 —5x|~2 i8. |5—7xi— 8
19, x*-4x+6 20, x*+ 6x— 9
21. 4x* — 5x — 11 22, S5x*—-Tx+1
23. 5—2-x 24, 3+4-x

For Problems 25 through 40, simplify the given expression.

25. 6 —1[5- (3 —x)] 26, 2x — [3x + (x — 2)]
27, Tx - 23 - %) 28, 3(6x — 5(x ~ 1))

29, 7 — 203 — 2(x + 4] 30. 8 + 4[5 — 6(x — 2)]
31. 3x — [2x + (x — 3)] 32, 4x — [3x — (2x — x}]

33. 6 —2x ~ 3 —(x+4)+ 3x — 2]
34, T2~ 3(x — 4) + 4(x — 6)]
35. 6fx — i{x ~ 1)] 36. 8[2x — i{6x + 5}]
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37 ¥+ y = [x(x +y) — y(y — 1]
38. 4x® — 2x(x — 2y) + 2y(2y + x) ~ 2x?
39, —(—(~(~x)) 40. x =[x~ -x=)]

41.  Calvin Butterball and Phoebe Small evaluate the expression |x — 3|
for x = 7, getting: '

Calvin:|x—3[=|7—3]=7+3=£
Phoebe: [x — 3| = |7 - 3| = |4| =4
Who is right? What mistake did the other one make?

42. Kay Oss evaluates the expression |x + 2| — 5x by substituting 7 for
the first x and 3 for the second x. What axiom did Kay violate?

I POLYNOMIALS

Polynomials are algebraic expressions that involve only the operations of
addition, subtraction, and multiplication of variables. For example,

3x*+5x— 7, x+2, and xy*:?

are polynomials. They involve no non-algebraic operations such as abso-
lute value, and no operations under which the set of real numbers is not
closed, such as division and square root. Thus, polynomials stand for real
numbers no matter what real values you substitute for the variables.

Objectives:

1. Given an expression, tell whether or not it is a polynomial. If it is, then
name it by “degree” and by number of terms.
2. Given two binomials, multiply them together.

Notes:

1. The expression ;23 is not a polynomial since it involves division by a

variable. If x were 5, the expression would have the form 3, which is
not a real number,

2. The expression Vx is not a polynomial since it involves the square root
of a variable. If x were less than 0, the expression would stand for an
imaginary number rather than a real number.
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3. The expression |x — 7 | is not a polynomial since it involves the non-
algebraic operation “absolute vaiue.”

4. Expressions such as V3x and ¥ (which equals 1 x) are considered to
be polynomials since the operations + and V' are performed on con-
stants rather than variables. ‘

5. The operation exponentiation (“raising to powers”) is not listed among
the polynomial operations. If the exponent is an integer, such as in x*,
then exponentiation is just repeated multiplication. So expressions with
only infeger exponents are polynomials. In Chapter 6 you will learn
what happens when the exponent is not an integer.

“Terms” in an expression are parts of the expression that are added or sub-
tracted. For example, the expression
3x% 4+ 5x — 7

has three terms, namely, 3x2%, 5x, and 7. Special names are used for ex-
pressions that have 1, 2, or 3 terms.

NAMES
No. of Terms Name Example
1 monomial Ixys
2 binomial 3x% 4+ y3
3 trinomial 3— x4y
4 or more {no special name) 3xf - 2x* 4 SxF — 6x* + 2x

The word “polynomial” originally meant “many terms.” However, it is
possible to get a monomial by adding two polynomials. For example,

(3x% + 5x — 7) + (8x% — 5x + 7) = 11x%,

a monomial. By calling monomials, binomials, and trinomials “poly-
nomials,” too, the set of polynomials has the desirable property of being
closed under addition. It is also closed under multiplication.

“Factors” in an expression are parts of the expression that are multiplied
together. For example, 5x* has three factors, 5, x, and x. Special names
are given to polynomials depending on how many variables are multiplied
together.

For example, 3x%y° is seventh degree because seven variables are multi-
plied together (x-x-y-y-y-y-y). But3x* + y® is only fifth degree be-
cause at most five variables are multiplied together (y-y-y-y-y}. Anex
pression such as 17x that has only one variable is called first degree, and a
constant such as 17 which has no variable is caifled zero degree.
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DEFINITEON

Various degrees are given special names, as follows:

NAMES
Degree Name Example Memory Aid
0 constant 13 Constants do not vary.
Ist linear Sx A line has one dimension,
2nd quadratic Tx* A square is a quadrangle.
3rd cubic 4x° A cube has three dimensions.
4th quartic x* A guart is a fourth of a gallon.
Sth guintic Ox* Quintuplets are five children.
6th or more (no special 3xH {Make up your own names,

name Hectic, Septic, etc.)
Notes:

1. Various parts of a monomial such as 3x® have special names.

3 is the numerical coefficient.

% is the base.

2 is the exponent .

x* is a power (the second power of x).

2. “Zero” could have any degree, because () equals 0x3, 0x', 0x%%¢, etc.
To avoid this difficulty, 0 is usually called a polynomial with no de-

gree.

Multiplying Binomials: Multiplying binomials requires a double use of the
distributive property.
For example,
(x —3)(2x + 35)
can be thought of as
number X (2x + 5).
Distributing the “number,” you get

number X 2x + number X 5.




