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5. f(0) 6. 2(0)

7. g(-;.) 8. £(0.5)
3 8@

% %6 o)
g1 16

-0 2 %0

13. f(g(2n 14. g{f(—5)

15. g{g(O) 16. f(f(-2))

For Problems 17 through 26, you should realize that f (“expression”)
means substitute “expression” for x. Evaluate, and simplify if possible.

17.  f(r) 18. g
19. gk , 20. f())
21. f(s+ 1) 22, g4 —a)
23, g(f(xn 24, flg(x))
25, f(f(xD 26. glgx)

27. Cops and Robbers Problem Robin Banks robs a bank and drives
off. A short time later he passes a truck stop at which police officer
Willie Katchup is dining. Willie receives a call from his dispatcher,
and takes off in pursuit of Robin.

Let ¢+ = number of minutes that have elapsed since Robin passed
the truck stop.
Let f () = number of kilometers Robin has gone past the truck stop.
Let g(¢) = number of kilometers Willie has gone from the truck
stop.

a. Robin’s equation is f(#) = 0.75¢. Find f(12), f(4), and f(-8).

b. Willie’s equation is g(#) = 2(¢t — 5). Find g(7) and g(15).

¢. By calculation, find the time and place Willie Katchup catches
up with Robin Banks.

d. When did Willie leave the truck stop?

e. Sketch the graphs of functions f and g on the same set of axes,
showing the point where they cross.

f. How fast were Robin and Willie going?

28. Pedalboat Problem Fb and Flo go pedalboating on the San Anto-
nio River. They check out a boat, head out along the river for
awhile, then turn around and come back to the boatdock.
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Let ¢ = pumber of minutes that bave elapsed since they left the

boatdock.

Let £{t) = mumber of meters they are from the boatdock on the way
out.

Let g(£) = number of meters they are from the boatdock on the way
back in. ' :

29.

30,

a. They find that the equation for function fis f (¢) = 32¢. Find
S3), f(7), and f(10).

b. The equation for function g is g(#) = —17t + 510. Find g(18)
and g{23).

¢. Sketch the graphs of f and g on the same set of axes. Use dotted

lines for the graphs in parts of the domain where the equations

do not apply.

Calculate the point where the graphs intersect.

‘What was happening in the real world at the time in part (d)?

When did they arrive back at the boatdock?

Assuming that they were going the same speed through the wa-

ter for both parts of the trip, did they start out going upstream

or downstream? Justify your answer.

h. Just for fun, see if you can figure out the speed of the current in
the San Antonio River.

e o o

Efficient Car Problem A particular brand of car with the normal
engine costs $11,000 to purchase, and 22 cents a mile to drive. The
same car with a fuel-injection engine costs $11,300 to purchase, but
only 20 cents a mile to operate.

a. Let d be a variable equal to the number of miles you have driven
the car, and f(d) be the total nuraber of dollars it costs to own
the $11,000 car. Write the particular equation for function f.

b. Calculate £ (1,600}, £(10,000), and £(100,000).

c. Let g(d) be the total number of dollars it costs to drive the
$11,300 car for d miles. Write the particular equation for func-
tion g.

d. Caleulate g(1,000), £(10,000}, and £(100,000).

e. How many miles would you have to drive to “break even?” That
is, when does the total cost of owning the car with the normal
engine equal the cost of owning the car with the fuel-injected
engine?

Hamburger Problem Sue Flay and Cassa Roll obtain a franchise to
operate a hamburger stand for a well-known national hamburger
chain. They pay $20,000 for the franchise, and have additional ex-
penses of $250 per thousand hamburgers they sell. They sell the
hamburgers for $.75 each, so they take in a revenue of $750 per
thousand burgers. ' :
a. Let r(x) be the number of dollars revenue they take in by sell-
ing x thousand burgers. Write the particular equation for func-
tion 7.




4-5 Linear Equations with Three or More Variables

b. Find 7(20), r (50), and r (0).

¢. Let ¢c(x) be the total cost of owning the hamburger stand, in-
cluding the $20,000 franchise fee. Write the particular equation
for function ¢.

d. Find ¢(20), ¢(50), and c(0).

e. Sketch the graphs of r and ¢ on the same set of axes. Have they
crossed by the time x is 507

f.  How many burgers must Sue and Cassa sell in order to break
even?

LINEAR EQUATIONS WITH THREE OR MORE
VARIABLES

In Section 4-4 you studied situations in which there were three variables.
Two dependent variables such as distance were related to one indépendent
variable such as time. In this section you will study linear equations with
three variables without being concerned with which are dependent and
which are independent.

Objective:
Determine what the graph of a linear equation with three variables looks
like, and be able to sketch the graph.

Since you are not concerned with whether the variables are dependent or
independent, you usually write equations with the variables on one side
and the constant on the other. For example,

2x 4+ 3y + 4z = 12,

A solution to such an equation must contain fhree numbers, one for each
of the three variables. It is customary to write the solutions as ordered
triples; for example (4, 0, 1). The order in which the numbers appear tells
which variable they stand for. If the equation contained four variables, the
solutions would be called ordered guadruples, for five variables, ordered
quintuples; for n variables, ordered n-tuples.

Agreement: Unless otherwise specified, variables in ordered n-tuples will
come in alphabetical order.

Equations with three variables can be graphed on a three-dimensional
Cartesian coordinate system. In addition to the normal x- and y-axes,
there is a z-axis perpendicular to the xy-plane, passing through the origin.
The positive portions of the three axes are shown in Figure 4-5a.
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Figure 4-5a

Plotting an equation such as
2x + 3y + 4z = 12,

can be accomplished by picking valies of one variable, and seeing what
you get for the others.

Fz=0then2x +3y=12 . @

fz=1then2x + 3y +4 =12
2x+3y=8 __. @

Ifz=2,then2x + 3y + 8 = 12
k+3y=4 . @

Graphs of Equations @, @, and @ are shown in Figure 4-5b.

The three lines in Figure 4-5b are the parts of the graph atz = 0, at

z = 1, and at z = 2. By stacking theses three planes on top of each other
(Figare 4-5¢), you can see that the whole graph is a plane in space, con-
taining these three lines.

Conclusion: The graph of a linear equation with three variables is a
plane in space.

Once you realize what the graph looks like, you can draw it more quickly.
The line where the graph cuts the xy-plane is called the graph of the xy-
trace. It is obtained by setting z = 0. Similarly, the yz-trace and xz-trace
are found by letting x and y equal zero, respectively. By drawing these
three traces, you get a reasonable picture of the plane (Figure 4-5d).

Dy - w P2 W e = Dy - ﬁg&‘n& = o e
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Figure 4-5¢
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xZ — trace,

2t 4z = 12\
/y ~ intercept
1 !

>y

4 -2
ZAN
5\ xy — trace, 2x + 3y = 12
X X~ intercept

Figure 4-5d

DEFINITION

Setting two variables equal to zero gives an infercept. For example, if y
and z both equal zero, then

2x 4+ 04 0=12,
x = 6,

So the x-intercept equals 6. Similarly, the y- and z-intercepts are 4 and 3,
respectively as shown in Figure 4-5d.

DEFINITION

The idea of traces and intercepts can be extended to equations with more
than three variables. Since you have used an algebraic definition of these
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quantities, the fact that there can be no four or five dimensional graphs be-
comes insignificant. A trace is obtained simply by letting one variable
equal zero, while an intercept is obtained by setting all but one variable
equal to zero.

I EXERCISE 4-5

Do These Quickly
The following problems are intended to refresh your skills. You should be
able to do all 10 in less than 5 minutes.

Q1. Write the particular equation of the linear function containing

(3, 7y and (5, 12). ‘

Q2. Sketch the graph of a relation that is not a function.

Q3. Multiply 37.4925 by 1000 without a calculator!

Q4. Find 3% of 33.

Q5. Divide 50 by one-half, and add three.

Q6. Solve: |x — 2| = =7

Q7. Is /=25 a real number?

Q8. Name by degree and number of terms: 5y* — 4y + 7

Q9. TFactor: x* + 2x — 35

Q10. Draw a triangle inscribed in a circle.

Work the following problems.

Sketch a graph of each of the following equations by drawing its
three traces as in Figure 4-5d.

6x + 4y + 3z = 24

2x — 3y + z =12

3x + S5y ~ 3z = 15

4x -2y —-z=28

x+ty+z=-7

ero o

There are some interesting special cases in which the graphs turn out
to be parallel, perpendicular, or coincident with the coordinate
planes or axes. Sketch a graph of each of the following equations by
drawing their traces as in Problem 1. Then tell what the graph is par-
allel to, or coincident with.
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x+y=7
y+z=4
x+y=40
y—z=20
x=35
y=—6

mo a0 F s

3. For the equation 7w + 3x — 4y + 6z = 42,
a. find the four intercepts, and
b. find the equation of the xyz-trace.

4. Explain why a trace is the same as an intercept for an equation with
two variables.

5. Obtain three pieces of cardboard; playing cards or index cards will
do. These will represent graphs of equations with three variables.

a. Hold two of the cardboards together so that they meet along an
edge. What do the points of intersection represent with regard
to a system of two equations in three variables? How many or-
dered triples normally satisfy a system of two equations in three
variables?

b. Hold the third cardboard so that its corner touches the line of in-
tersection of the other two. Why do you suppose that a system
of three linear equations in three variables has a unigue solution,
whereas a system with only two does not?

¢. Hold the three cardboards in such a way that they intersect at an
infinite number of points. There are at least two ways to do this,
If this happens, the three equations are said to be “dependent.”

d. Hold the three cardboards in such a way that there are no points
common to all three. There are at least three ways of doing this
besides the obvious way of three parallel planes. If this happens,
the three equations are said to be “inconsistent.”

e. From what you observed above, can you conclude that a system
of three linear equations in three variables abways has a unique
solution? Explain.

SYSTEMS OF LINEAR EQUATIONS WITH THREE
OR MORE VARIABLES

The graph of a linear equation with three variables is a plane in space. If
you hold three index cards as shown in Figure 4-6, you can see that three
such planes usually intersect at a single point. So a system of three linear
equations with three variables will usually have a single ordered triple in
its solution set.
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|

One point

Three intersecting planes

Figure 4-6

Objective:
Be able to find the single ordered triple that satisfies a system of three lin-
ear equations with three variables.

BEXAMPLE

Solve the system  2x + 3y — z+= -1
—x+ 5 + 3z=—-10
3x— y=—-bz= 5

Solution:

The technique is to eliminate a variable, and get a system of two equations
with two variables. Suppose you choose to eliminate x by linearly com-
bining the first and second equations. The work would look like this:
2x+ 3y — z= ——1£I> 2x+ 3yv— z= -1

13y + 5z = -21
—x + 5y + 3z = —10£2>—2x + 0y + 6z = —20

The equation 13y + 5z = —21 has only y and z. To get another equation
with y and z you can eliminate x by linearly combining a different pair of
equations. Using the second and third gives
x4 Sy 4+ 3= 1025 3x 4 15y + 92 = —30

14y + 3z = —25

3x— y—6z= S—I-I—l-l—> 3x— y—6z= 5
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From here on it is an old problem. These two equations can be linearly
combined to eliminate z as follows:

13y + 5z = ~21 85 30y + 152 = 63

™~

3y = -62
1y + 32 = 25 T 70y + 152 = —125°
Dividing by 31 gives

= =2,
Substituting —2 for y in one of the two-variable equations gives

—-26 + 5z = =21
52 =5
z= 1.

Substituting —2 for y and 1 for z in one of the original equations gives

2x ~ 7= —1
2x = 6
x =3

S8 = (3, -2, 1) [

There is quite a bit of work involved in solving a three-variable system.
The horizontal format, shown above, seems to make the work as easy as
is possible.

In the foliowing exercise you will practice solving systems with three vari-

ables. You will also apply what you have learned to systems with more
than three variables.

EXERCISE 4-6

Do These Quickly

The following problems are intended to refresh your skills. You should be
able to do 2l 10 in less than 5 minutes.

Q1. Sketch the plane with intercepts x = 5,y = 3, and z = 8.
Q2. Find the slope of 3x — Ty = 42.
Q3. Iff(x) = 3x2 find f(—4).

Q4. Show two corresponding angles if two parallel lines are cut by a
transversal.

Q5. Write the hypothesis of the addition property of equality.
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Q6. Solve: 5x + 11 = —24

Q7. Draw a number-line graph: | p} > 3
Q8. Find 20% of 600,

Q9. Does (3, 1) satisfy 4x + 5y = 19?7
Q10. EBvalmate: 17 — 7-4

Solve the following systems.

1. x—2y+32= 3 2, 2x~ y— z= 7
2x+ y+ 5= 8 Ix+ 5+ z=-10
3x — y — 3z = ~22 4x -3y +2z2= 4

3. 3x+2y—- z= 10 4, 3x+dy+ 2= 6
x+4y +2z2= 3 x+3y -5z~ -7
" 2x b 3y - Sz= 23 5x + Ty — 3z = 3

5, 3x—dy+3z= 15 6. 3x— 2y +5z= Y7
6x + 2y + 9z = 13 2%+ 4y — 3z = 29
Tx+6y —6z= b 5x —6y—Tz= 7T

7. 5x —4dy ~6z= 21 8, 2x+2y+3z= -1
~2x + 3y + 4z = ~15 3x -5y —2z= 121
3x — Ty = 5z= 15 Tx+3y+52= 10

Problems 9 and 10 have some variables “missing.” This makes the systems
easier, if you are clever enough to figure out why. '

9. 3x+dy =19 0. 2x—3y = 5
2y +3z= 8 4y + 2z = -6
4x - 5z= 7 Sx + Tz = —15

The equations in Problems 11 and 12 are either inconsistent (no common
solution), or dependent (an infinite number of common solutions). By solv-
ing the two systems, tell which is which.

i4 12, 3x+ 2v— z

i1, 6x -+ 9y — 12z = =
2x 4+ 3y~ 4z = -—11 Sx— 3y+ 2= 1
x+ y+ z= 1 Ox = 13y + 8 = =5

Problems 13 and 14 are systems with four variables.

13. 4w+ x+ 2y —3z=—16
~3w + 3x — y-+dz= 20
—~w+ 2x +5y+ z= -4
Sw+4dx + 3y — z=-10
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4, w-—-5%+2y=~ z= 18
3wt x—3y+ 2z2= 17
dw —2x + y - z= =]
2w+ 3x~ y+4z= 11

Problems 13 and 16 involve fractions. With constants in the denominators,
as in Problem 15, you may simply muitiply both members by some number
that will get rid of the fractions. With variables in the denominators, as in
Problem 16, you may first solve for 1, 5, and 1, recognizing that £ is the

same as 4(1), etc.

XL YL I 4_2_ 6_ _
15. 2%-4—%—3 24 i6. s + §

X,y oz 3 5 4

Sl I g- =

4 3 29 5 -%-z 3

X,y 2 7 10

3 2 4 25 x 0y z

Problems 17 and 18 reqirire you to find a system of three equations in
three variables. Then you must solve the system so that you can answer the
problem.

17. A Watusi, a Ubangi, and a Pigmy compare the speeds at which each
can run. The sum of the speeds of the natives is 30 miles per hour
{mph). The Pigmy’s speed plus one third of the Watusi’s speed is 22
miles per hour more than the Ubangi’s speed. Four times the Wa-
tusi’s speed plus three times the Ubangi’s speed minus twice the
Pigmy’s speed is 12 miles per hour. Find out how fast each native
can run. Then tell what is unfortunate about the Ubangi.

18. The road from Tedium to Ennui is uphill for 5 miles, level for 4
miles, then downhill for 6 miles. John Garfinkle walks from Ennui
to Tedium in 4 hours; later he walks halfway from Tedium to Ennui
and back again in 3 hours and 55 minwtes. Still later he walks from
Tedium all the way to Ennui in 3 hours and 52 minutes. What are his
rates of walking uphill, downhiil, and on level ground, if these rates
remain constant? '

SOLUTION OF SECOND-ORDER SYSTEMS BY
AUGMENTED MATRICES

R

There is 2 methodical way to solve a systems of equations by linear combi-
nation. The procedure, called “angmented matrices,” may seem to be

. = = A m} o w  wem - .
4 . . -
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more tedious at first. But it has the advantage that it can be done by com-
puter. In this section you will learn how to solve two-variable systems this
way, and practice using the computer so that you will be prepared to solve
systems with three or more variables in the next section.

Suppose that you are to solve the system
2 + 3y =32
5x + 4y = 59

The coefficient of x can be made zero by multiplying the second equation
by 2 and adding —5 times the first equation.

Ox — Ty = —42

The Ox term has been left in deliberately so that you can better understand
what follows. Dividing each member by —7 gives

Ox+y=6
So y must equal 6.

The system can be written as follows:

2 3,32

5 4|59
The whole thing is called an augmented matrix. The coefficients and con-
stants are written in exactly the order they appear in the two equations.
The matrix is the square array of numbers to the left of the vertical bar. It
has the same pattern as the denominator determinant for the system. The

matrix has been “augmented” (added to) by attaching the constants to the
right of the vertical bar.

Operations can be performed on the rows of this augmented matrix exactly
as they were for the system itself. Multiplying the second row by 2 and
subtracting 5 times the first row produces
32
—~42

[2 3 32] i [2 3
The arrow indicates that the second row is being changed. The symbol

“m2” above the arrow stands for “multiply each sumber by 2.” The
“4(—5) % 1” below the line stands for “add —5 times row 1.7

The second row can now be divided by —7. Continuing across the page,
you would write
32
6

2 3|32 2 3| %], . [23
5 4|50] —"2 1o -7|-42] =10 1
+{=5rx 1

The second row now says Ox + 1y = 6, which is equivalent to the solu-
tion y = 6 found above. :
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To find x, you make the coefficient of y in the first row equal to zero. This
can be done by multiplying the first row by 1 and adding —3 times the
second row. When you run out of room at the side of the page, just write
the instructions at the end of the line, and the resuit on the lines

below.

2 3|32] 2 3 %] [2 3R] S
5 4(59] —=2 . lo —7|-a2| 2, |0 1| 6| D"
+{-5) x 1
2 0|l 2201 ol7
0 1] 6 0 1|6
S ={7, 6}

The completed transformation looks as shown above. The final form of the
augmented matrix is equivalent to the system

Ix+0y=7
Ox + 1y =6
When there are 1’s on the diagonal from the upper left of the matrix to

the lower right, and 0’s everywhere else, then the solutions appear in the
augmented part of the matrix.

In the following exercise you will get practice “diagonalizing” augmented
matrices. (“Matrices” is the plural of “matrix.”) Remember as you work
these problems that although the method may seem more tedious at first,
you are learning it to be able to understand what a computer does in the
next section.

| EXERCISE 4-7

Do These Quickly

The following problems are intended to refresh vour skills. You should be
able to do all 10 in less than 5 minutes.

Q1. 40 is 20% of what number?

Q2. Solve forp: rs = pv

Q3. Associate the 3andthe 3:4 + 3+ 5
Q4. Find the slope: 5x + 3y = 30

Q5. Sketch the graph of a linear function with positive y-intercept and
negative siope.

Q6. Sketch a trapezoid.
Q7. Findf(4)y:f(x)=7x—3
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Q8. Solve:3x + 5 =17
Q9. Simplify: 3x + 5 — 17

Q10. Multiply: (%) (%)

For Problems 1 through 10, solve the system by augmented matrices.

1. 3x + 8y =54 2. dx + Ty =68
4x + 5y = 38 2x + S5y = 46
3. 4x + 3y = 29 4, 9x + 2y = —16
6x + Ty = 41 4 + 3y = —5
5. 5x — 3y = -1 6. Tx+2y= 13
2x + Sy = 22 4x — 5y = —11
7. 4x— y= -2 8. 10x — 3y = 46
3x — Ty = =22 x ~— Ty = 18
9. -3x+2y= 6 0. —2x —3y=15
—~5x — 8y = 10 6x — y= 5

Problems 11 through 14 are systems whose solutions are not integers.
Solve by augmented matrices.

11. 3x + 2y =43 12, x—8 = 31
3x— y=T1 2% + S5y = ~17

13, 83x + 51y = 463 4. 38x + 57y = 1066
22x + 19y = 291 92x + 29y = 1492

Problems 15 through 18 are systems whose equations are either dependent
or inconsistent. Try to solve by augmented matrices. Then write a conclu-
sion about how augmented matrices tell you when you have this kind of
system, and how they allow you to distinguish between dependent equa-
tions and inconsistent equations.

15. 10x -+ 15y = 21 16. 30x + 48y = 126
12x + 18y = 35 20x + 32y = 84

17. 24x + 18y = 66 18. 25x + 10y = 37
28x + 21y = 77 20x + 8y-= 51

For Problems 19 through 26, solve the system by the interactive computer
program MATRIX ROWS on the disk accompanying this text, or similar
program.

19. Problem 1, above 20. Problem 2, above

21. Problem 7, above 22. Problem 8, above
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23, Problem 13, above 24. Problem 14, above
25. Problem 15, above 26. Problem 16, above

SOLUTION OF HIGHER-ORDER SYSTEMS BY
AUGMENTED MATRICES

Once you understand the augmented matrix procedure in Section 4-7, you
can apply it to systems with more than three variables, such as

3x — 2y + Sz = —17 ... (1)
2x + 4y —3z= 20 . (2)
Sx —6y—Tz=  T... (3)

The matrix contains the coefficients and constants as it did for systems
with two variables.

3 -2 5|-17
2 4 -3 29
5 -6 -7 7

If you “eliminate” a variable by linearly combining two equations, you are
really just making that variable’s coefficient equal to zero. For instance,
eliminating x using Equations (1) and (2} gives

(Dm2: 6x — 4y + 10z = —34
(2)m—3: —6x — 12y + 9z = -—87
Ox — 16y + 19z = ~121

~ The instructions to the left say, “Equation (1) multiplied by 2,” for exam-

ple. Replacing the second equation with Ox — 16y + 19z = —121 gives a
different, but equivalent, system, and a new matrix.

3x — 2y + Sz= —17 3 -2 51 —17
Ox — 16y + 19z = —121 0 —-16 19{-121
Sx — 6y — Tz == 7 5 -6 -7 7

So eliminating a variable by linear combination corresponds to putting a
zero in the appropriate place in the matrix. The operations you can do on
the rows of a matrix are the same as the operations you do in linear com-
bination of two equations. '

By performing these row operations in an appropriate order, you can
transform the matrix so that there are zeros everywhere except along the
main diagonal, and ones there. The above matrix would become

1 0 01 2
01 0| 4
00 t|-3
e et e e e e e




4-8 Solution of Higher-Order Systems by Augmented Matrices

The top row of the matrix really says,
Ix + 0y + 0z = 2,

from which you can tell instantly that x = 2. Similarly, y = 4 and
z = =3,

The transformed matrix above is said to have been diagonalized. The ex-
ample below shows how you can do the diagonalizing with pencil, paper,
and a calculator. Once you understand the process, you can do the opera-
tions on a computer so that you won’t have to write the entire matrix over
again at each step.

Objective:

Given a system of three linear equations with three variables, solve the
system by writing it as an augmented matrix and performing the row op-
erations necessary to diagonalize the matrix.

EXAMPLE

Diagonalize the augmented matrix and write the solution set:

3 -2 51-17
2 4 -3 29
5 -6 -7 7

Solution:

The following steps show what you should write. An instruction such as
{(2)m—3
+(1)m2

indicates that row (2) is to be multiplied by —3, and the result is to be
added to row (1) multiplied by 2. If you write this sort of instruction, you
can do the operations on a calculator, one entry at a time, without having
to write down any intermediate steps. The word pivor is used for the row
that does not change as you do the row operations.

[3 -2 5 |-17 3 =2 5t -17 3 -2 5| -17
@Om-3
2 4 -3 22210 16 19} -121 o —-16 19|-121
+®m2
5 -6 -7 1 71232 o 12 46 |-106] 2200 0 111]-333]22Y
o +OmS +@m}
g @mi
@mi = @d-—16
0 =16 19 [~121| = | 0 16 0} —64| —
0 o 1| -3 0 0 1i -3

1477
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©m1 @©d 3

3 -2 0=2]7= 13 0 0| 6/——11 0 0] 2
0 1 0] 4 01 0] 4 01 0f 4
0 0 1]-3 0 0 1]-3 00 1{-3
S =12, 4, -3)}. ®

In the following exercise you will solve one or two systems with pencil
and paper to make sure you understand the concepts. If computers are
available, you can solve the other systems by simply instructing the com-
puter what row operation to do, and having it do the work and rewrite the
matrix.

| EXERCISE 4-8

Do These Quickly
The following problems are intended to refresh your skills. You should be
able to do all 10 in less than 5 minutes.

Q1. Expand the determinant: g —g‘

Q2. Find the x-intercept: 3x — Ty = 42

Q3. Ify= —3x + 51, then y varies
in the blank?

Q4. Commute the 8x and the 3x: 5 + 8x + 3x
Q5. Is /=17 an irrational number?

Q6. Find f(—4)if f(x) = |15 — 3x].

Q7. Draw a pair of vertical angles.

Q8. Solveforx:3x + vy =17
2x —y= 6

with x. What word goes

Q9. Sketch the graph of a linear function with negative slope and posi-
tive y-intercept.

Q10. Find 90% of 900.
Problems 1 through 14 are the same as in Exercise 4-6. For Problems 1

and 2, soive the system by pencil, paper, and calculator using augmented
matrices.
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I, x~2y+ 3z= 3 2. 2x— y— z= 17
2x+ y+ 5z= 8§ 3x + Syt z=—10
3x =y~ 3z=-22 dx — 3y +2z= 4

For Problems 3 through 17, solve the system by augmented matrices using
the program MATRIX ROWS on the accompanying disk (or similar inter-
active program). Problems 13, 14, and 17 have systems with more than
three variables.

3. 3x+ 2y~ z= 10 4, 3Ix+ 4yt 2z= 6
x+ 4y + 2z = 3 x+ 3y—-5z= -7
2% + 3y — Sz = 23 5x+ Ty~—3z= 3
5. S5x—4y+ 3z= 15 6. 3x— 2y+Sz=-—-VY]
6x + 2y + 9z = 13 2x + 4y — 3z = 29
Tx + 6y — 6z= 6 56— 6y —Tzr= 7
7. 5x —dy — 6z= 121 8, 2x+ 2y+3ze= 1
~2x + 3y + 4z = —15 3x— Sy-—-2z= 21
3x — Ty — S5z= 15 Tx+ 3y+ 5= 10
9. 3x + 4y = 19 10, 2x — 3y = 5
2y + 3z = 8 4y + 2z = —0
4x - Sz= 7 S5x + Tz = —15
11, 6x + 9y — 12z = 14 12, 3x+ 2y— z= 4
2x + 3y — 4z = —11 Sx— 3y+2z= 1
x4y z= 1 9x ~ 13y + 8z = -5
13, 4w+ x4+ 2y — 3z = —16
—~3w + 3x — y+4z= 20
ww A+ 2%+ Sy + z= —4
SwA+dx + 3y — z=-—-10
4., w—3x+ 2y~ z= 18
3w+ x — 3y + 2z = 17
dw —2x + y— z= —1]
~2w+ 3x - y+4dz= 11
15, Zx+ 4y~ 3z= 7 16. 3x— Ty+ 2z= 11
Tx — 3y + 2z= 8 8x+ 2y —5z2= -3
Sx =S5y + Tz= -1 5x— 3y —3z= 4
17 3o~ 5w+ 2x+4y+ z= 35
20+ 4w — x — 3y + 6z = —16
dp — 2w —3x + y+ 2z= 18
~5 + w+dx—~ y—3z=-18
20+ 5w+ 6x—2y+ z=~—19
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4-9

Chapter 4 Systems of Linear
Equations and Inedualities

i HIGHER-ORDER DETERMINANTS

In Section 4-3 you learned how to use determinants to solve a system of
two linear equations in two variables. It is possible to solve a systern of
any number of linear equations in that samé number of variables using
higher-order determinants. Although the technique becomes unwieldy for
more than three variables, it is interesting to see how what you learned
about determinants generalizes to higher order systems.

Objective:
Be able to use determinants to solve a system of three (or more} linear
equations with three (or more} variables.

You recall that the system

3x + 4y = ~17
2x—5y= 8§
has x and vy values as follows:
Constants repiace Constants replace
x-coefficients, y-coeffictents.
-7 4 3 -7
8 ~5 2 8
X = ———— apd Y T e
3 4 3 4
2 -3 2 -5

S’
coefficients

The denominator determinant contains the x- and y-coefficients from the
equations. The x-numerator is obtained by replacing the x-coefficients with
the constants —7 and 8 from the right members of the equations. The y-
nurerator is obtained by replacing the y-coefficients with these constants.

The solutions of a system of three or more linear equations in three or
more variables can be written the same way. For instance, the system in
the example of Section 4-6 has the following value for y: .

System:
2¢+ 3y - z= -1
—x + Sy + 3z = ~10
" 3x = y~6z= 5

w




