Warm-Up:

Evaluate -24 and (-2)4

What kind of answers do you get for each?

Are they the same or different?

Why is this the case?

Objective:

SWBAT simplify monomials using the rules of exponentiation.

Exponentiation

Exponent Review:

Use parentheses to **exponentiate** more than one symbol at a time:

$$(xy)^3 =$$

Monomials:

Not Monomials:

$$8x - 1$$
 $2x^2 + 3x + 6$
 $7y + 3z$ $x^4 - x^3 + x$

So, what's a monomial??

"A monomial is a number, a variable, or a product of a number and one or more variables."

More Vocabulary:

- Constants are monomials that contain no variables (just the number)
- Coefficients are the numbers in front of the variable (how many x's and y's you have)
- A **power** is an expression of the form x^n (the exponent)

Rules of Exponentiation

Product of powers:

$$x^5 \cdot x^3 = xxxxx \cdot xxx =$$

Is there a short cut?

When multiplying two powers with the same base, add the exponents.

Quotient of powers:

$$\frac{x^5}{x^3} = \frac{xxxxx}{xxx} =$$

Is there a short cut?

When dividing two powers with the same base, subtract the exponents.

Power of a power:

$$(x^5)^3 = (xxxxx)(xxxxx)(xxxxx)$$

Is there a short cut?

When **exponentiating** a power, **multiply** the exponents.

Powers of Products and Quotients:

$$(2x^5y)^3 =$$

$$\left(\frac{6x^5y}{9xz^4}\right)^2$$

When exponentiating a product or quotient, distribute the outside exponent to each factor inside the parentheses.

Be careful with coefficients!

Simplify:

$$\frac{x^3}{x^5}$$

Negative Exponents: $x^{-n} = \frac{1}{x^n}$

Ex 1)
$$4^{-3}$$

Ex 2)
$$\left(\frac{2}{3}\right)^{-2}$$

Ex 3) $\frac{5}{y^{-6}}$

Zero Exponent: Anything raised to the zero power equals ...

Why?
$$\frac{b^{35}}{b^{35}}$$

Multiplying Monomial Expressions with Like Bases

Expression	Work	Answer
$X^3 \cdot X^2$	$(x \bullet x \bullet x) \bullet (x \bullet x) = x \bullet x \bullet x \bullet x \bullet x$	X ⁵
54 • 52	$(5 \cdot 5 \cdot 5 \cdot 5) \cdot (5 \cdot 5) = 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5$	56
$(y)(y^2)$	$(y) \bullet (y \bullet y) = y \bullet y \bullet y$	y^3
$-2x^2 \cdot 3x$	$-2 \bullet x \bullet x \bullet 3 \bullet x = -2 \bullet 3 \bullet x \bullet x \bullet x$	$-6x^3$
$(7x^2yz^3)(-2xy^2z^3)$	$(7 \cdot x \cdot x \cdot y \cdot z \cdot z \cdot z) (-2 \cdot x \cdot y \cdot y \cdot z \cdot z \cdot z)$	$-14x^3y^3z^6$

Is there a shortcut...?

Expression	Process	Answer
$X^3 \bullet X^2$	X^{3+2}	X ⁵
5 ⁴ • 5 ²	54+2	56
$(y)(y^2)$	y ^{1 + 2}	y^3
$-2x^2 \cdot 3x$	-2 • 3 • x ²⁺¹	-6x ³
$(7x^2yz^3)(-2xy^2z^3)$	$7 \cdot -2 \cdot x^{1+2} \cdot y^{1+2} \cdot z^{3+3}$	$-14x^3y^3z^6$

Dividing Expressions with Like Bases

$\frac{3^5}{3^2}$	$\frac{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}{3 \cdot 3} = 3 \cdot 3 \cdot 3 = 3^3$
$\frac{x^6}{x^4}$	$\frac{X \cdot X \cdot X \cdot X \cdot X \cdot X}{X \cdot X \cdot X \cdot X} = X \cdot X = X^2$
$\frac{9x^6}{3x^2}$	$\frac{3 \cdot 3 \times x \cdot x \cdot x \cdot x \cdot x}{3 \cdot x \cdot x} = 3x^4$

Is there a shortcut...?

Using the Division Property of Exponents

$$\frac{3^5}{3^2} = 3^{5-2} = 3^3$$

$$\frac{x^6}{x^4} = x^{6-4} = x^2$$

$$\frac{9x^6}{3x^2} = \frac{9}{3}x^{6-2} = 3x^4$$

Power Property of Exponents (power to a power)

Problem	Work	Answer
$(x^3)^2$	$(x \cdot x \cdot x)(x \cdot x \cdot x)$	X ⁶
$(5^2)^4$	(5.5)(5.5)(5.5)(5.5)	58
$\left(\frac{x^2}{y^4}\right)^3$	$\left(\frac{x^2}{y^4}\right)\left(\frac{x^2}{y^4}\right)\left(\frac{x^2}{y^4}\right)$	<u>x</u> ⁶
	$= \left(\frac{x \cdot x \cdot x \cdot x \cdot x}{y \cdot y \cdot$	$\overline{y^{12}}$
$(3x^2)^4$	$(3x^2)(3x^2)(3x^2)(3x^2) = (3\cdot3\cdot3\cdot3)(x^2\cdot x^2\cdot x^2\cdot x^2) =$	81x ⁸
	$3^{4} \cdot (x^{2})^{4}$	
	Is	there a shortcut?

Examples using the shortcut...

$$\left(2f^4g^3h\right)^5$$

$$\left(\frac{2}{3r^2s^3z^5}\right)^2$$