\qquad
\qquad Pd: \qquad
Show work within the packet for questions $1 \mathbf{- 4 4}$, but use a separate piece of paper for all other problems.

Chapter 5

Simplify the following expressions as far as possible. Present your answers in descending order of degree, where possible.

1. $\left(2^{3}\right)\left(2^{5}\right)$
2. $5 x y\left(3 x^{4}\right)^{2}$
3. $\frac{-15 a b^{-3}\left(a^{3} b^{2}\right)}{20 a^{2} b^{9}}$
4. $\frac{5 g h^{-2} k\left(6 g^{5} h^{3} k\right)^{2}}{10 g^{8} h^{4} k^{5}}$
5. $3 a^{2} b^{3}\left(4 a b^{2}-3 a^{4} b^{7}+2 a b\right)$
6. $2 q^{-5}\left(q^{7}-4 q^{5}+5 q^{3}\right)$
7. $5 x^{2}-1-3(x+12)$
8. $(3 x-2)+\left(2 x^{2}-5 x+10\right)$
9. $\left(7 x^{2}-3 x^{3}+3 x-6\right)-\left(4 x+5 x^{3}-3-2 x^{2}\right)$
10. $(x-5)(2 x+3)$
11. $(3 x-5)(4 x+3)$
12. $(6 x-5)^{2}$
13. $(4 x-9)\left(x^{2}-3 x+2\right)$
14. $\frac{3 x^{3} y z^{2}-4 x y^{3} z}{x^{2} y z}$
15. Solve by long division: $\left(6 q^{4}+15 q^{3}-28 q-32\right) \div(q+2)$.

Simplify the following radical expressions (by hand) to the extent possible.
16. $\pm \sqrt{\frac{4}{9}}$
17. $\sqrt[3]{-125}$
18. $\sqrt[4]{81 c^{12}}$
19. $\sqrt[3]{16}$
20. $\sqrt{50 x^{10}}$
21. $\sqrt{\frac{4 y}{3}}$
22. $(4+\sqrt{8})(6+\sqrt{2})$
23. $\frac{5}{2+\sqrt{5}}$
24. $5 \sqrt{12}-\sqrt{5}+\sqrt{108}$
25. $125^{2 / 3}$
26. $8^{-2 / 3}$
27. $625^{1 / 2}$
28. $\sqrt{250 a^{4} b^{2} c^{5}}$
29. $x^{-1 / 2}$

Solve the following radical equations.
30. $\sqrt{b-5}=4$
31. $\sqrt{3 n+1}=5$
32. $2+\sqrt{3 p+7}=6$
33. $5+\sqrt{2 x-1}=3$
34. $\sqrt[3]{3 r-6}=3$
35. $\sqrt[3]{6 u-5}+2=-3$
36. $\sqrt{2 d-5}=\sqrt{d-1}$
37. $\sqrt{2 x+5}=\sqrt{2 x+1}$

Simplify and/or solve the following statements using i, the imaginary unit.
38. $3 x^{2}+14=2$
39. $\sqrt{-121}$
40. $\sqrt{-120}$
41. $(3+2 i)+(7-5 i)$
42. $(3+2 i)-(7-5 i)$
43. $(3+2 i)(7-5 i)$
44. $\frac{5-4 i}{2+3 i}$

Quadratics Unit: Chapter 6

45. Find the y-intercept of the parabola given by $y=3 x^{2}-18 x+4$.
46. Find the equation for the axis of symmetry of the parabola given by $\mathrm{y}=3 \mathrm{x}^{2}-18 \mathrm{x}+4$.
47. State the minimum value of the function $y=3 x^{2}-18 x+4$ (by finding the y-coordinate of its vertex).
48. Determine the y-intercept in the equation $\mathrm{y}=3(\mathrm{x}-3)^{2}-23$ (not obvious from the equation...).
49. Does the graph of the parabola $y=3 x^{2}-18 x+4$ open upwards or downwards?
50. The solutions/zeroes/roots to a quadratic equation can be found by looking at what part of the graphed parabola?
51. Write the equation of a parabola with a vertex at $(5,4)$ and passing through the point $(3,-8)$.

Factoring Unit: Sections 5-4, 6-7, 9-1 \& 9-2

Factor the following expressions as completely as possible.
60. $18 q^{3} r+24 q^{2} r^{4}$
61. $20 c^{5} d^{4}-15 c^{2} d+10 c d$
64. $x^{2}-x-12$
65. $x^{2}-3 x-15$
68. $3 x^{2}+9 x-30$
69. $4 x^{2}-25$
72. Solve the inequality: $x^{2}-x-20>0$.
74. Simplify: $\frac{5 x^{2} y^{3}}{3 a^{5} b^{4}} \cdot \frac{15 a^{7} b^{3}}{20 x^{5} y^{6}}$

Chapter 10

76. Solve the equation $8^{n-2}=16$.
77. Solve the equation $10^{8 \mathrm{n}-6}=\frac{1}{10,000}$.
78. Determine whether the equation $y=4(3)^{x}$ demonstrates exponential growth or decay.
79. Find the value of the discriminant for the equation $4 x^{2}-14 x+3=0$.
80. If the discriminant of a quadratic equation is equal to 0 , how many $\&$ what kinds of roots / x -intercepts / solutions / zeroes will it have? (There will be 1 or 2; they will be Real or Imaginary; if Real, they will be Rational or Irrational.)
81. If the discriminant of a quadratic equation is equal to 100 , how many and what kinds of roots / x intercepts / zeroes / solutions will it have?
82. If the discriminant of a quadratic equation is equal to -11, how many and what kinds of roots / zeroes will it have?
83. If the discriminant of a quadratic equation is equal to 10 , state the number $\&$ nature of solutions.
84. Solve for the solutions / roots / zeroes of the quadratic equation $-x^{2}+7 x+8=-3$.
85. Use the quadratic formula to solve for $\mathrm{x}: \mathrm{x}^{2}-4 \mathrm{x}+1=0$
86. Use the quadratic formula to solve for $\mathrm{x}: \mathrm{x}^{2}+34=6 \mathrm{x}$
87. $4 x^{2}+11 x+6$
88. $6 x^{2}-13 x-5$
89. $x^{2}+9$
90. $90 x^{2}-1,000$
91. Solve the inequality: $-x^{2}-15 \geq 8 x$.
92. Simplify: $\frac{x^{2}-6 x+8}{x+5} \div \frac{2 x-8}{x+5}$
93. Determine whether the equation $y=4(0.3)^{x}$ demonstrates exponential growth or decay.
94. Write the equation for an exponential function that passes through points $(0,-4)$ and $(-4,-64)$.
95. Write the equation $7^{4}=2,401$ in its logarithmic form.
96. Write the equation $\log _{6} \frac{1}{1,296}=-4$ in its exponential form.
97. Evaluate the expression $\log _{2} 4$.
98. Evaluate the expression $\log _{5} \frac{1}{125}$.
99. Solve the equation $\log _{243} n=\frac{4}{5}$.
100. Solve the equation $\log _{5} n=5$.
101. Solve the equation: $\log _{2} 9+\log _{2} a=\log _{2} 11$.
102. Solve the equation: $\log _{5}(x+2)-\log _{5} 7=\log _{5} 49$.
103. Use a calculator to find $\log _{7}$ 6.3.
104. Use a calculator to find $\log _{3} 12$.
105. Solve the equation $3^{k}=38$.
106. Solve the equation $5^{6 x}=28$.
107. Solve $4 e^{x}-7=25$.
108. If you make an investment of $\$ 10,000$ that appreciates at an annual rate of 3.5%, how much money would you have after 8 years? How long would it be until its value doubles? Use the equation $y=a(1+r)^{t}$ to determine your solutions.
109. If you deposit $\$ 5,000$ in a savings account paying 4% interest compounded continuously, how much money will you have after 6 years? How long will it take until you have \$7,000 in the account? Use the equation $\mathrm{A}=\mathrm{Pe}^{\mathrm{rt}}$ to determine your solutions.
110. A particular compound decays according to the equation $y=\mathrm{ae}^{-0.0736 t}$, where t represents days. If there are 12 grams of the compound initially, in
how many days will there be half that amount remaining?

Chapter 7

97. Sketch a function of even degree that has a negative lead term.
98. Sketch a function of odd degree that has a negative lead term.
99. What is the maximum amount of solutions of the equation $0=4 x^{5}+2 x^{3}-3 x^{2}+1$?

Completing the Square: Sections 6-4 \& 6-6
100. What would be the ideal number to use as "C" when completing the square for $x^{2}+8 x+C$?
101. Solve the following equation by completing the square: $x^{2}+10 x=22$. (Of course, on a multiplechoice test, you don't have to do it any particular way, but Section 6-4 was about completing the square...)
102. Write the equation of the given parabola in vertex form. Then state the location of the vertex, axis of symmetry, and direction of opening: $y=x^{2}-6 x+1$.
103. Rewrite this equation in vertex form (by completing the square): $\mathrm{y}=5 \mathrm{x}^{2}+20 \mathrm{x}+18$.
104. Find the vertex and state the direction of opening of the equation: $y=-3(x-4)^{2}+7$.
105. Complete the square to write the equation in vertex form. Then state the vertex and direction of opening: $y=2 x^{2}+20 x+49$.

Second Semester Final Exam
Review Packet Answer Key

Chapter 5

1. 2^{8}
2. $45 x^{9} y$
3. $\left(-3 \mathrm{a}^{2}\right) /\left(4 \mathrm{~b}^{10}\right)$
4. $\left(18 \mathrm{~g}^{3}\right) /\left(\mathrm{k}^{2}\right)$
5. $12 a^{3} b^{5}-9 a^{6} b^{10}+6 a^{3} b^{4}$
6. $2 q^{2}-8+(10) / q^{2}$ (only the 10 is over q^{2})
7. $5 x^{2}-3 x-37$
8. $2 x^{2}-2 x+8$
9. $-8 x^{3}+9 x^{2}-x-3$
10. $2 x^{2}-7 x-15$
11. $12 x^{2}-11 \mathrm{x}-15$
12. $36 x^{2}-60 x+25$
13. $4 \mathrm{x}^{3}-21 \mathrm{x}^{2}+35 \mathrm{x}-18$
14. $3 x z-\left(4 y^{2}\right) / x$ (only the $4 y^{2}$ is over x)
15. $6 q^{3}+3 q^{2}-6 q-16$
16. $\pm 2 / 3$
17. -5
18. $3\left|\mathrm{c}^{3}\right|$
19. $2 \sqrt[3]{2}$
20. $5\left|x^{5}\right| \sqrt{2}$
21. $\frac{2 \sqrt{3 y}}{3}$
22. $28+16 \sqrt{2}$
23. $-10+5 \sqrt{5}$
24. $16 \sqrt{3}-\sqrt{5}$
25. 25
26. $1 / 4$
27. 25
28. $5 a^{2}|b| c^{2} \sqrt{10 c}$
29. $\frac{\sqrt{x}}{x}$
30. 21
31. 8
32. 3
33. No solution
34. 11
35. -20
36. 4
37. No Solution
38. $\pm 2 i$
39. $11 i$
40. $2 i \sqrt{30}$
41. $10-3 i$
42. $-4+7 i$
43. $31-i$
44. $\frac{-2-23 i}{13}$

Quadratics Unit

45. $(0,4)$
46. $x=3$
47. -23
48. $y=4$
49. up
50. The x -axis
51. $y=-3(x-5)^{2}+4$
52. 148
53. 1 Real, Rational
54. 2 Real, Rational
55. 2 Imaginary
56. 2 Real, Irrational
57. $\frac{7 \pm \sqrt{93}}{2}$ (When you get
the negative out of the bottom of the fraction, it changes the sign on 7.)
58. $2 \pm \sqrt{3}$
59. $3 \pm 5 i$

Factoring Unit

60. $6 q^{2} r\left(3 q+4 r^{3}\right)$
61. $5 c d\left(4 c^{4} d^{3}-3 c+2\right)$
62. $(\mathrm{f}-3)(\mathrm{e}+5 \mathrm{~g})$
63. $(2 a-c)(4 a b+1)$
64. $(x+3)(x-4)$
65. Prime
66. $(x+2)(4 x+3)$
67. $(3 x+1)(2 x-5)$
68. $3(x+5)(x-2)$
69. $(2 x-5)(2 x+5)$
70. Prime
71. $10(3 x-10)(3 x+10)$
72. $\{x \mid x<-4$ or $x>5\}$
73. $\{x \mid-5 \leq x \leq-3\}$
74. $\left(5 a^{2}\right) /\left(4 b x^{3} y^{3}\right)$
75. $(x-2) / 2$

Chapter 10

76. $31 / 3$
77. $1 / 4$
78. Growth
79. Decay
80. $y=-4(1 / 2)^{x}$
81. $\log _{7} 2,401=4$
82. $6^{-4}=\frac{1}{1,296}$
83. 2
84. -3
85. 81
86. 3,125
87. 11/9
88. 341
89. 0.9459
90. 2.2619
91. 3.3111
92. 0.3451
93. 2.0794
94. $\$ 13,168.09 ; 20.15$ years
95. \$6,356.25; 8.4 years
96. 9.4178 days

Chapter 7

97. Graphs will vary, but end behaviors should match

98. Graphs will vary, but end behaviors should match

99. 5

Completing the Square

100. 16
101. $-5 \pm \sqrt{47}$
102. $(3,-8) ;$ x $=3$; opens upward
103. $\mathrm{y}=5(\mathrm{x}+2)^{2}-2$
104. (4, 7); opens down
105. $y=2(x+5)^{2}-1$;
$(-5,-1)$; opens up
