Advanced Algebra with Trigonometry, Honors	Name	
Second Semester Final Exam Review Packet	Date	_Pd:

Show work within the packet for questions 1 - 44, but use a separate piece of paper for all other problems.

Chapter 5

Simplify the following expressions as far as possible. Present your answers in descending order of degree, where possible.

1.
$$(2^{3})(2^{5})$$

2. $5xy(3x^{4})^{2}$
3. $\frac{-15ab^{-3}(a^{3}b^{2})}{20a^{2}b^{9}}$
4. $\frac{5gh^{-2}k(6g^{5}h^{3}k)^{2}}{10g^{8}h^{4}k^{5}}$
5. $3a^{2}b^{3}(4ab^{2} - 3a^{4}b^{7} + 2ab)$
6. $2q^{-5}(q^{7} - 4q^{5} + 5q^{3})$
7. $5x^{2} - 1 - 3(x + 12)$
8. $(3x - 2) + (2x^{2} - 5x + 10)$
9. $(7x^{2} - 3x^{3} + 3x - 6) - (4x + 5x^{3} - 3 - 2x^{2})$
10. $(x - 5)(2x + 3)$

11. (3x-5)(4x+3) 12. $(6x-5)^2$

13.
$$(4x-9)(x^2-3x+2)$$
 14. $\frac{3x^3yz^2-4xy^3z}{x^2yz}$

15. Solve by long division: $(6q^4 + 15q^3 - 28q - 32) \div (q + 2)$.

Simplify the following radical expressions (by hand) to the extent possible.

16.
$$\pm \sqrt{\frac{4}{9}}$$
 17. $\sqrt[3]{-125}$ 18. $\sqrt[4]{81c^{12}}$ 19. $\sqrt[3]{16}$

20.
$$\sqrt{50x^{10}}$$
 21. $\sqrt{\frac{4y}{3}}$ 22. $(4+\sqrt{8})(6+\sqrt{2})$ 23. $\frac{5}{2+\sqrt{5}}$

24. $5\sqrt{12} - \sqrt{5} + \sqrt{108}$	25. $125^{2/3}$	26. 8 ^{-2/3}

27.
$$625^{1/2}$$
 28. $\sqrt{250a^4b^2c^5}$ 29. $x^{-1/2}$

Solve the following radical equations.

30.
$$\sqrt{b-5} = 4$$
 31. $\sqrt{3n+1} = 5$ 32. $2 + \sqrt{3p+7} = 6$ 33. $5 + \sqrt{2x-1} = 3$

$$34.\sqrt[3]{3r-6} = 3 \qquad \qquad 35.\sqrt[3]{6u-5} + 2 = -3 \quad 36.\sqrt{2d-5} = \sqrt{d-1} \qquad \qquad 37.\sqrt{2x+5} = \sqrt{2x+1}$$

Simplify and/or solve the following statements using *i*, the imaginary unit.

38.
$$3x^2 + 14 = 2$$
 39. $\sqrt{-121}$ 40. $\sqrt{-120}$ 41. $(3 + 2i) + (7 - 5i)$

42.
$$(3+2i) - (7-5i)$$
 43. $(3+2i)(7-5i)$ 44. $\frac{5-4i}{2+3i}$

Quadratics Unit: Chapter 6

- 45. Find the y-intercept of the parabola given by $y = 3x^2 18x + 4$.
- 46. Find the equation for the axis of symmetry of the parabola given by $y = 3x^2 18x + 4$.
- 47. State the minimum value of the function $y = 3x^2 18x + 4$ (by finding the y-coordinate of its vertex).
- 48. Determine the y-intercept in the equation $y = 3(x 3)^2 23$ (not obvious from the equation...).
- 49. Does the graph of the parabola $y = 3x^2 18x + 4$ open upwards or downwards?
- 50. The solutions/zeroes/roots to a quadratic equation can be found by looking at what part of the graphed parabola?
- 51. Write the equation of a parabola with a vertex at (5, 4) and passing through the point (3, -8).

- 52. Find the value of the discriminant for the equation $4x^2 14x + 3 = 0$.
- 53. If the discriminant of a quadratic equation is equal to 0, how many & what kinds of roots / x-intercepts / solutions / zeroes will it have? (There will be 1 or 2; they will be Real or Imaginary; if Real, they will be Rational or Irrational.)
- 54. If the discriminant of a quadratic equation is equal to 100, how many and what kinds of roots / x-intercepts / zeroes / solutions will it have?
- 55. If the discriminant of a quadratic equation is equal to -11, how many and what kinds of roots / zeroes will it have?
- ^{56.} If the discriminant of a quadratic equation is equal to 10, state the number & nature of solutions.
- 57. Solve for the solutions / roots / zeroes of the quadratic equation $-x^2 + 7x + 8 = -3$.
- 58. Use the quadratic formula to solve for x: $x^2 4x + 1 = 0$
- 59. Use the quadratic formula to solve for x: $x^2 + 34 = 6x$

Factoring Unit: Sections 5-4, 6-7, 9-1 & 9-2

Factor the following expressions as completely as possible.

- 60. $18q^3r + 24q^2r^4$ 61. $20c^5d^4 15c^2d + 10cd$ 64. $x^2 x 12$ 65. $x^2 3x 15$ 68. $3x^2 + 9x 30$ 69. $4x^2 25$
- 72. Solve the inequality: $x^2 x 20 > 0$.

74. Simplify:
$$\frac{5x^2y^3}{3a^5b^4} \cdot \frac{15a^7b^3}{20x^5y^6}$$

Chapter 10

- 76. Solve the equation $8^{n-2} = 16$.
- 77. Solve the equation $10^{8n-6} = \frac{1}{10,000}$.
- 78. Determine whether the equation $y = 4(3)^{x}$ demonstrates exponential growth or decay.

- 62. ef 3e + 5fg 15g63. $8a^2b 4abc + 2a c$ 66. $4x^2 + 11x + 6$ 67. $6x^2 13x 5$ 70. $x^2 + 9$ 71. $90x^2 1,000$
- 73. Solve the inequality: $-x^2 15 \ge 8x$.

Simplify:
$$\frac{x^2 - 6x + 8}{x + 5} \div \frac{2x - 8}{x + 5}$$

- 79. Determine whether the equation $y = 4(0.3)^{x}$ demonstrates exponential growth or decay.
- 80. Write the equation for an exponential function that passes through points (0, -4) and (-4, -64).
- 81. Write the equation $7^4 = 2,401$ in its logarithmic form.

- 82. Write the equation $\log_6 \frac{1}{1,296} = -4$ in its exponential form.
- 83. Evaluate the expression $\log_2 4$.
- 84. Evaluate the expression $\log_5 \frac{1}{125}$.
- 85. Solve the equation $\log_{243} n = \frac{4}{5}$.
- 86. Solve the equation $\log_5 n = 5$.
- 87. Solve the equation: $\log_2 9 + \log_2 a = \log_2 11$.
- 88. Solve the equation: $\log_5 (x + 2) - \log_5 7 = \log_5 49.$
- 89. Use a calculator to find $\log_7 6.3$.
- 90. Use a calculator to find $\log_3 12$.
- 91. Solve the equation $3^k = 38$.
- 92. Solve the equation $5^{6x} = 28$.
- 93. Solve $4e^x 7 = 25$.
- 94. If you make an investment of \$10,000 that appreciates at an annual rate of 3.5%, how much money would you have after 8 years? How long would it be until its value doubles? Use the equation $y = a(1 + r)^t$ to determine your solutions.
- 95. If you deposit \$5,000 in a savings account paying 4% interest compounded continuously, how much money will you have after 6 years? How long will it take until you have \$7,000 in the account? Use the equation A = Pe^{rt} to determine your solutions.
- 96. A particular compound decays according to the equation $y = ae^{-0.0736t}$, where t represents days. If there are 12 grams of the compound initially, in

how many days will there be half that amount remaining?

Chapter 7

- 97. Sketch a function of even degree that has a negative lead term.
- 98. Sketch a function of odd degree that has a negative lead term.
- 99. What is the maximum amount of solutions of the equation $0 = 4x^5+2x^3-3x^2+1$?

Completing the Square: Sections 6-4 & 6-6

- 100. What would be the ideal number to use as "C" when completing the square for $x^2 + 8x + C$?
- ^{101.} Solve the following equation by completing the square: $x^2 + 10x = 22$. (Of course, on a multiple-choice test, you don't *have to* do it any particular way, but Section 6-4 was about completing the square...)
- 102. Write the equation of the given parabola in vertex form. Then state the location of the vertex, axis of symmetry, and direction of opening: $y = x^2 - 6x + 1$.
- 103. Rewrite this equation in vertex form (by completing the square): $y = 5x^2 + 20x + 18$.
- 104. Find the vertex and state the direction of opening of the equation: $y = -3(x 4)^2 + 7$.
- 105. Complete the square to write the equation in vertex form. Then state the vertex and direction of opening: $y = 2x^2 + 20x + 49$.

Second Semester Final Exam Review Packet Answer Key

Chapter 5

1. 2^8 2. $45x^9y$ 3. $(-3a^2)/(4b^{10})$ 4. $(18g^3)/(k^2)$ 5. $12a^{\overline{3}}b^{5} - 9a^{6}b^{10} + 6a^{3}b^{4}$ 6. $2q^2 - 8 + (10)/q^2$ (only the 10 is over q^2) 7. $5x^2 - 3x - 37$ 8. $2x^2 - 2x + 8$ 9. $-8x^3 + 9x^2 - x - 3$ 10. $2x^2 - 7x - 15$ 11. $12x^2 - 11x - 15$ 12. $36x^2 - 60x + 25$ 13. $4x^3 - 21x^2 + 35x - 18$ 14. $3xz - (4y^2)/x$ (only the $4y^2$ is over x) 15. $6q^3 + 3q^2 - 6q - 16$ 16. $\pm 2/3$ 17. -5 18. $3|c^{3}|$ 19. 2∛2 20. $5|x^5|\sqrt{2}$ 21. $2\sqrt{3y}$ 3 22. $28 + 16\sqrt{2}$ 23. $-10 + 5\sqrt{5}$ 24. $16\sqrt{3} - \sqrt{5}$ 25.25 26. 1/4 27.25 28. $5a^2|b|c^2\sqrt{10c}$ 29. \sqrt{x} 30. 21 31.8 32. 3 33. No solution 34.11 35. -20 36.4 37. No Solution 38. ±2i 39. 11*i* 40. $2i\sqrt{30}$ 41. 10 - 3i42. -4 + 7i43. 31 - i

44. -2-23i13 **Quadratics Unit** 45. (0,4) 46. x = 3 47. -23 48. y = 4 49. up 50. The x-axis 51. $y = -3(x-5)^2 + 4$ 52. 148 53. 1 Real, Rational 54. 2 Real, Rational 55. 2 Imaginary 56. 2 Real, Irrational 57. $7 \pm \sqrt{93}$ (When you get the negative out of the bottom of the fraction, it changes the sign on 7.) 58. $2\pm\sqrt{3}$ 59. 3±5*i*

Factoring Unit

60. $6q^2r(3q + 4r^3)$ 61. $5cd(4c^4d^3 - 3c + 2)$ 62. (f-3)(e+5g)63. (2a-c)(4ab+1)64. (x + 3)(x - 4)65. Prime 66. (x + 2)(4x + 3)67. (3x + 1)(2x - 5)68. 3(x+5)(x-2)69. (2x-5)(2x+5)70. Prime 71. 10(3x - 10)(3x + 10)72. $\{x \mid x < -4 \text{ or } x > 5\}$ 73. {x | $-5 \le x \le -3$ } 74. $(5a^2)/(4bx^3y^3)$ 75. (x - 2)/2

Chapter 10

76. $3\frac{1}{3}$ 77. $\frac{1}{4}$ 78. Growth 79. Decay 80. $y = -4(\frac{1}{2})^{x}$ 81. $\log_{7} 2,401 = 4$ 82. $6^{4} = \frac{1}{1,296}$ 83. 2 84. -3 85. 81
86. 3,125
87. 11/9
88. 341
89. 0.9459
90. 2.2619
91. 3.3111
92. 0.3451
93. 2.0794
94. \$13,168.09; 20.15 years
95. \$6,356.25; 8.4 years
96. 9.4178 days

Chapter 7

97. Graphs will vary, but end behaviors should match

98. Graphs will vary, but end behaviors should match

```
99. 5
```

Completing the Square

100. 16 101. $-5 \pm \sqrt{47}$ 102. (3,-8); x = 3; opens upward 103. y = 5(x + 2)² - 2 104. (4, 7); opens down 105. y = 2(x + 5)² - 1; (-5, -1); opens up